Unequal Recovery after Wildfires: Income, Infrastructure, and Community Return

Mustahsin Aziz

West Virginia University

NARSC 2025

Table of Contents

Introduction

Data

Model

Results

Conclusion

Introduction

- ▶ Wildfires are large, frequent, and costly. In 2024, the U.S. saw 64,897 fires that burned 8.9 million acres. (National Interagency Fire Center)
- **Economic losses are immense.** NOAA's billion-dollar disaster database shows a persistent rise in costly fire events; Western wildfire damages in 2017-2021 exceeded \$90B. The Jan 2025 Los Angeles fires alone are estimated at \$28-35B insured losses, with broader losses potentially far higher.
- Climate change is amplifying risk. Warmer, drier conditions increase "fire weather" and fuel aridity; mainly through man-made activities. Projections indicate further increases in fire danger and suppression costs this century. (NOAA)
- ▶ Post fire recovery is uneven. (McConnell & Braneon, 2024)
- This paper explores the time and heterogenity of post Wildfire recovery in California.

Motivation

- Understanding the length of disruption: provide idea of post-fire recovery period. understanding the scope and length of economic loss, at a high resolution scale.
- Explore if recovery timing differ based on income. Identifying systematic wealth patterns in disaster recovery, and better allocate recovery efforts.
- ▶ Whether the presence of critical infrastructure speed up recovery, identifying infrastructures that speed-up recovery process.
- ▶ Together these results can help policymakers to better prepare for natural disasters like wildfires and how to better allocate post-disaster recovery efforts.

- ▶ The government spends more to fight fires where there are more houses, which ends up acting like a hidden subsidy for living in fire-prone places. (Baylis & Boomhower, 2023)
- House prices and rents are lowered post natural disaster. (Boustan et al., 2020)
- Community earnings were seen to first dip following disaster, but increased more than non-affected counterparts in the long run. (Deryugina et al., 2018)
- ▶ However, rental units were replaced by owner occupied housing post disaster, and increased rents in areas, signaling a gentrification effect. (McConnell & Braneon, 2024)
- ▶ There are significant socioeconomic and racial disparities in resilience capacity and evacuation patterns. (Hong et al., 2021)

- Explores the underlying causal factors that determine disaster recovery, using monthly data at a Census Block Group (CBG) level.
- The paper explores a high-frequency and high-resolution measure of post disaster heterogeniety in recovery.
- ▶ This paper is also the first of its kind in exploring the role of critical infrastructure in post-disaster recovery.

Data: Wildfires

- Wildfire data collected from the Monitoring Trends in Burn Sensitivity (MTBS) platform
- Years covered: 2018–2022
- ► Unit of analysis: Census Block Groups (CBGs)
- ► Fire Stats:
 - ► Total CBG-fire months: 510
 - ► Unique CBGs with fire: 421
 - CBGs with multiple fire: 67

Data: Cell Phone Location Data

- Cell phone location data collected from Advan (Dewey Data Platform).
- It counts number of devices during daytime, as well as during night-time, enabling us to separate primary-working CBG vs primary-residence CBG.

Model

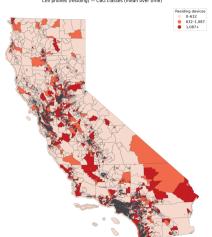
The data is aggregated to a month for each CBG each year. Future iterations will focus on a weekly analysis.

Variable	N	Mean	SD	Min	Max
Residing devices Daytime devices	•			3.8 0.0	42,317 34,097

Table: Summary statistics of cell phone devices by CBG (2018–2022)

 Introduction
 Data 0000
 Model 0000
 Results 000
 Conclusion 000

Daytime vs Night-time



Cell phones (daytime) - CBG classes (mean over time) Daytime devices 0-391 9391-688

Data: Income Data

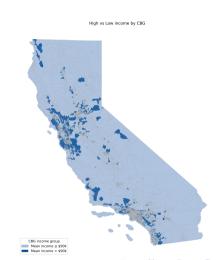
- ▶ Income data is collected as median household incomes on a CBG level from ACS 5-year estimates.
- ▶ CBGs above the mean are considered high income, and below are low income.

Variable	N	Mean	SD	Min	Max
Median household income	18,648	90,789	45,113	2,499	250,000

Table: Summary statistics of mean household income across California Census Block Groups (2018–2022).

Data

Income Distribution

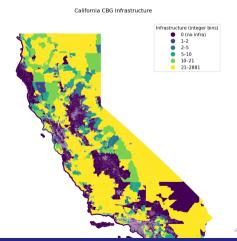


- ▶ Infrastructure per CBG is enumerated from Open Street Maps (OSM) using tagged location attributes into multiple categories such as: emergency, energy utilities, communication towers, water treatment, healthcare, emergency services, etc.
- An infrastructure index was created by adding the number of infrastructures across the categories.
- ► CBGs were distributed into a high infrastructure CBG vs a low infrastructure CBG, if they exceeded the median threshold of 13 infrastructure objects.

 Data 000000 ●00
 Model 000000 ●00
 Results 00000 ●00
 Conclusion 000

OSM Infrastructure Categories & Example Map

Category	Included OSM tags (key: values)
healthcare	amenity: hospital, clinic, doctors, pharmacy
emergency	amenity: fire_station, police, ambulance_station
	emergency: ambulance_station
education	amenity: school, college, university, kindergarten
transport_nodes	<pre>public_transport: station, stop_position railway: station, halt</pre>
	amenity: bus_station, ferry_terminal
	aeroway: aerodrome, heliport, terminal
energy_utilities	power: plant, substation, generator
water_wastewater	<pre>man_made: water_works, water_tower, pumping_station, wastewater_plant, sewage_works</pre>
communications	man_made: communications_tower
civic	<pre>amenity: townhall, courthouse, post_office, community_centre, shelter</pre>
food_access	shop: supermarket, hypermarket amenity: marketplace



Infrastructure Distribution

Treatment Assignment

- Treatment: If ever had fire Control: Never Fire
- ▶ Event time: Month of first fire, then always treated
- ► Control Selection: Near neighbor method, surrounding CBG. Truncated sample, due to computing power limitations.
- ► Fire Stats:
 - Total Treated CBG: 421
 - Total Control CBG: 4363

Results

Units/timing. CBGs *i*, months *t*. First-treatment (wildfire) cohort $G_i \in \mathcal{T} \cup \{\infty\}$. Outcome Y_{it} (e.g., night devices).

Subgroups (heterogeneity). Pre-treatment $S_i \in \{A, B\}$ (e.g., Low vs High income; Infra exposed vs Not).

Group-time effect within subgroup *s*:

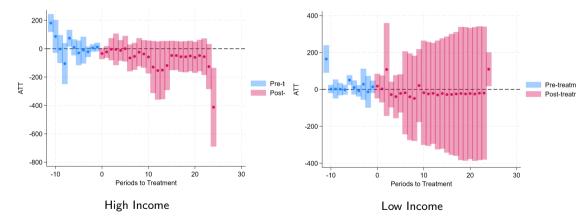
$$ATT_s(g,t) = E[Y_{it}^{(1)} - Y_{it}^{(0)} | G_i = g, S_i = s], \qquad t \geq g.$$

Interpretation. $ATT_s(g, t)$ is the causal effect for cohort g at time t using valid not-vet-/never-treated comparisons within s.

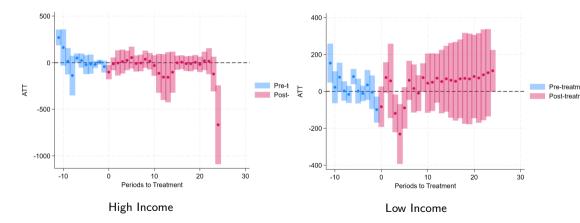
Design notes.

- $ightharpoonup G_i$ = first qualifying wildfire (once-treated-always-treated).
- Never-treated set buffered to limit spillovers: S_i fixed pre-treatment.
- Primary outcome normalized to unit pre-fire mean.

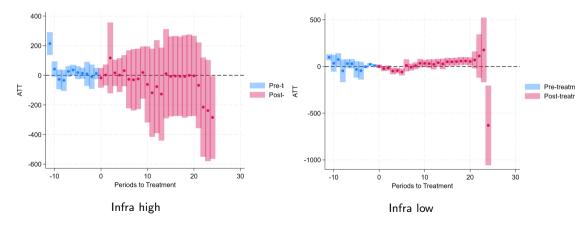
Daytime Devices: High vs Low Income



Nightitme Devices: High vs Low Income



Daytime Devices: High vs Low Infrastructure



Further Work

- Using fire intensity to undertake high intensity fires.
- Use controls and FF
- Handle areas with multiple fires.
- Undertake different variations and individual subset of infrastructure.
- Create an infrastructure index
- Undertake a CBG-Week level analysis, as the month maybe too long and effects can be absorbed.

Thank you!

Mustahsin Aziz PhD Candidate Regional Research Institute mustahsinul.aziz@mail.wvu.edu

Connect with me

